Area del segmento parabolico Archimede. 3 A.C.

Mauro Saita

e-mail: maurosaita@tiscalinet.it

Versione provvisoria

Indice

1	Segmento parabolico		1
	1.1	Cenni sulla dimostrazione di Archimede	1
	1.2	Qualche dettaglio sulla dimostrazione utilizzando il metodo delle coordinate	5

1 Segmento parabolico

Definizione 1.1 (Segmento parabolico). Sia r una retta che interseca la parabola in due punti A e B. Si chiama segmento parabolico di base AB la regione di piano delimitata dalla retta r e dall'arco di parabola. Il vertice del segmento parabolico è il punto della parabola più distante dalla base.

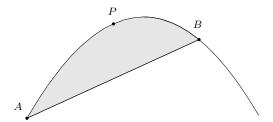


Figura 1: Segmento parabolico di base QQ' e vertice P.

Il vertice P del segmento parabolico, da non confondere con il vertice della parabola, è il punto di tangenza tra la retta parallela alla corda QQ' e la parabola.

1.1 Cenni sulla dimostrazione di Archimede

Innanzi tutto occorre ricordare che ai tempi di Archimede erano noti i seguenti fatti

- 1. Il punto di contatto P tra la tangente alla parabola parallela alla base AB e la parabola stessa è il vertice del segmento parabolico.
- 2. La retta per P parallela all'asse di simmetria della parabola interseca la base AB nel punto medio M.
- 3. Il segmento PM divide a metà ogni corda della parabola, parallela alla base AB.

⁰Nome file: 'segmento_parabolico_archimede_2018.tex'

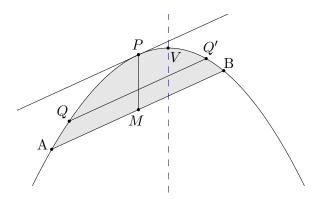


Figura 2: 1. La tangente t è parallela a AB. 2. AM = MB. 3. PM biseca la corda QQ'

Teorema 1.2 (Archimede. Quadratura della parabola. 3 A.C). L'area del segmento parabolico di base $AB \ \dot{e} \ \frac{4}{3}$ dell'area del triangolo ABP, dove $P \ \dot{e}$ il vertice del segmento parabolico. In altre parole, indicata con T l'area del triangolo ABP

$$\textit{Area del segmento parabolico} = \frac{4}{3} \, T \qquad \qquad (1.1)$$

Per avere un'idea della dimostrazione di Archimede si consideri seguente figura

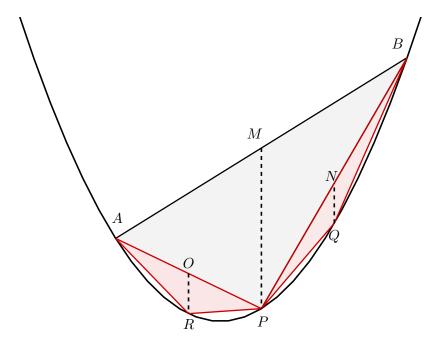


Figura 3

Assegnato il segmento parabolico di base AB, sia M il suo punto medio. La parallela all'asse della parabola per M interseca la parabola nel vertice P del segmento parabolico. Si tracci il

triangolo di vertici A, B, P (in figura di colore grigio) e si indichi con N e O i punti medi dei lati PB e PA; le parallele all'asse della parabola passanti per N e O; intersecano la parabola nei punti Q e R. Si tracci , infine, il triangolo di vertici P, A, R e quello di vertici P, B, Q (in figura, entrambi di colore rosso). Archimede dimostra che

$$Area(PAR) = \frac{1}{8}Area(PAB) \tag{1.2}$$

e

$$Area(PBQ) = \frac{1}{8}Area(PAB) \tag{1.3}$$

Quindi approssima l'area del segmento parabolico di base AB nel seguente modo:

- 1. inizia con l'area del triangolo PAB;
- 2. aggiunge le aree dei triangoli PAR e PBQ che assieme hanno area pari a $\frac{1}{4}$ di quella di PAB.
- 3. ripete lo stesso procedimento aggiungendo le aree di quattro triangoli ottenuti dai punti medi dei segmenti AR, RP,PQ, QB; ognuna di queste aree vale $\frac{1}{8}$ dell'area di ciascun triangolo dello step precedente;
- 4. eccetera.

In altri termini, Archimede aggiunge all'area T del triangolo PAB, l'area dei due triangoli PAR e PBQ, ossia $\frac{1}{8}T + \frac{1}{8}T = \frac{1}{4}T$; poi prosegue aggiungendo le aree di quattro triangoli ognuno dei quali ha area $\frac{1}{8}$ dell'area dei due triangoli equivalenti dello step precedente, cioè $4 \cdot \frac{1}{8} \left(\frac{1}{8}T \right) = \frac{1}{4^2}T$ e così via. In questo modo l'area del segmento parabolico è la somma della serie

Area segmento parabolico =
$$T + \frac{1}{4}T + \frac{1}{4^2}T + \frac{1}{4^3}T + \dots$$
 (1.4)

A questo punto trova la somma servendosi di una figura simile alla seguente

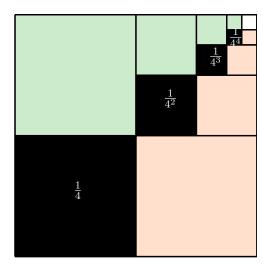


Figura 4

Il quadrato più grande ha lato (e area) uguale a 1; esso viene diviso in quattro quadrati di lato $\frac{1}{2}$ e area $\frac{1}{4}$; il quadrato in alto a sinistra viene a sua volta diviso in quattro quadrati di lato $\frac{1}{4}$ e area $\frac{1}{4^2}$; e così via. La somma dei quadrati di colore nero è

$$\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots \tag{1.5}$$

È immediato osservare che si ottiene la stessa serie sommando i quadrati di colore arancione oppure quelli di colore verde. Segue che le tre serie (uguali) di quadrati approssimano l'area del quadrato di area 1. Quindi

$$\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots = \frac{1}{3} \tag{1.6}$$

Egli congettura che l'area del segmento parabolico è pari a

$$T + T\left(\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots\right) = T + \frac{1}{3}T = \frac{4}{3}T$$
 (1.7)

Infine dimostra il risultato riportato sopra servendosi del metodo di esaustione.

1.2 Qualche dettaglio sulla dimostrazione utilizzando il metodo delle coordinate

La dimostrazione di Archimede si basa sul seguente risultato

Lemma 1.1. Sia \mathcal{P} una parabola, AB una sua corda e t la retta tangente nel vertice della parabola. Si traccino le parallele all'asse di simmetria della parabola passanti per A e per B; esse intersecano t nei punti A' e B'. Si indichi con M il punto medio di AB e con P l'intersezione della parabola con la parallela al suo asse di simmetria. L'area del triangolo PAB è proporzionale al cubo del segmento A'B'. Più precisamente

Area di
$$PAB = \frac{1}{32 \cdot VF} A'B'^3$$
 (1.8)

dove V e F sono, nell'ordine, vertice e fuoco della parabola.

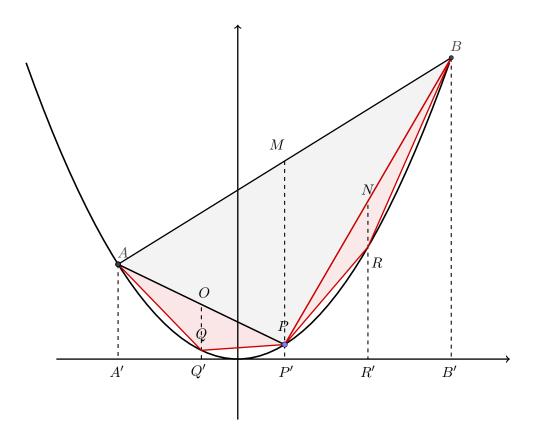


Figura 5

Se si assume per asse delle ascisse la tangente t e per asse delle ordinate la retta perpendicolare a t passante per il vertice della parabola, l'equazione della parabola assume la nota forma

$$y = \frac{1}{4f}x^2\tag{1.9}$$

dove f è l'ordinata del fuoco della parabola.

L'area del triangolo PAB è uguale all'area del trapezio CABD meno la somma delle aree dei trapezi CAMN e NMBD:

$$\begin{split} \operatorname{Triangolo}(CND) &= \operatorname{Trapezio}(AA'B'B) - \left(\operatorname{Trapezio}(AA'P'P) + \operatorname{Trapezio}(PP'B'B)\right) \\ &= \frac{AA' + BB''}{2}A'B'' - \frac{AA' + PP'}{2}A'P' - \frac{PP' + BB'}{2}P'B' \end{split}$$

Posto A' = (a, 0) e B' = (b, 0) il punto medio del segmento A'B' è $M = (\frac{a+b}{2}, 0)$. Inoltre

$$A'B' = b - a$$
, $A'P' = \frac{a+b}{2} - a$, $P'B' = b - \frac{a+b}{2}$

Infine, ricordando che i punti della parabola sono tutti e soli i punti del piano che soddisfano l'equazione $y = \frac{1}{4f} x^2$, si ricava

$$AA' = \frac{a^2}{4f}, \quad PP' = \frac{\left(\frac{a+b}{2}\right)^2}{4f}, \quad BB' = \frac{b^2}{4f}$$

Facendo un po' di conti (facili ma noiosi) si trova:

Triangolo(
$$PAB$$
) = $\frac{1}{32 f} (b - a)^3 = \frac{1}{32 f} A' B'^3$

Proposizione 1.3. Con riferimento alla figura 5

Area di
$$PAQ = Area$$
 di $PBR = \frac{1}{8}Area$ di PAB (1.10)

Dimostrazione. Il punto O è punto medio del segmento PA e Q è il punto corrispondente sulla parabola. Per il lemma appena dimostrato, l'area del triangolo PAQ' è

Area di
$$PAQ = \frac{1}{32 \cdot VF} A'P'^3$$
 (1.11)

ossia

Area di
$$PAQ = \frac{1}{32 \cdot f} \left(\frac{a+b}{2} - a \right)^3$$

$$= \frac{1}{256 \cdot f} (b-a)^3$$

$$= \frac{1}{8} \cdot \frac{1}{32 \cdot f} (b-a)^3$$

$$= \frac{1}{8} \text{ Area di } PAB$$
(1.12)

In modo analogo si dimostra che Area di $PBR = \frac{1}{8}$ Area di PAB.