LEZIONE 1

Funzioni reali di variabile reale

Definizione (Funzione reale di variabile reale)

Una funzione f da A in B $(A \xrightarrow{f} B)$ consiste di:

- **1** un sottoinsieme A di \mathbb{R} detto dominio della funzione;
- **2** un sottoinsieme B di \mathbb{R} detto codominio della funzione;
- In una regola o azione f che assegna ad ogni elemento a del dominio un unico elemento b del codominio.

L'elemento b si chiama immagine di a tramite f e si indica con il simbolo f(a) (si legge: "f di a").

Definizione (Immagine di una funzione)

Si chiama immagine Im f della funzione $A \xrightarrow{f} B$ il sottoinsieme del codominio

$$Im f = \{ y \in B \mid \exists x \in A \ f(x) = y \}$$

Definizione (Controimmagine)

Sia b un elemento del codominio della funzione $A \xrightarrow{f} B$. Si chiama controimmagine di b mediante f (e si scrive " $f^{-1}(b)$ ") il sottoinsieme di A così definito

$$f^{-1}(b) = \{ a \in A \mid f(a) = b \}$$

L'insieme $f^{-1}(b)$ si chiama anche fibra di f sull'elemento b. Esso può essere formato da uno o più elementi oppure coincidere con l'insieme vuoto.

Definizione (Grafico di una funzione)

Sia $A \xrightarrow{f} B$ una funzione. Il grafico G_f di f è il sottoinsieme del prodotto cartesiano $A \times B$

$$G_f = \{(a, b) \in A \times B \mid b = f(a)\}$$

Definizione (Zeri di una funzione)

Gli zeri della funzione

$$A \stackrel{f}{\longrightarrow} B, \ y = f(x)$$

 $(A, B \subseteq \mathbb{R})$ sono gli elementi $x \in A$ per i quali risulta

$$f(x) = 0$$

Gli zeri di f sono le ascisse dei punti di intersezione del grafico G_f di f con l'asse x.

Definizione (Funzione pari)

La funzione $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$, y = f(x) è pari se vale la proprietà

$$\forall x \in \mathbb{R}$$
 $f(-x) = f(x)$

Se f è pari il grafico G_f di f è simmetrico rispetto alla retta x = 0 (asse y).

Definizione (Funzione dispari)

La funzione $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$, y = f(x) è dispari se vale la proprietà

$$\forall x \in \mathbb{R}$$
 $f(-x) = -f(x)$

Se f è dispari il grafico G_f di f è simmetrico rispetto all'origine O degli assi cartesiani.

Teorema

Siano $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$ e $\mathbb{R} \stackrel{g}{\longrightarrow} \mathbb{R}$ due funzioni reali di variabile reale allora

- 1 Se f e g sono pari allora fg è pari
- 2 Se f e g sono dispari allora fg è pari
- 3 Se f è pari e g è dispari allora fg è dispari

Attenzione: la funzione h = fg indica il prodotto puntuale di funzioni e non la loro composizione.

ESERCIZI

1 Determinare il dominio massimale D in $\mathbb R$ di

$$f(x) = e^{\sqrt{4-x^2}} \cdot \ln\left(2x - \frac{1}{2}\right)$$

2 Determinare il dominio massimale D in \mathbb{R} di

$$f(x) = \sqrt[3]{-3x^3 + 2x}$$

- . La funzione $D \xrightarrow{f} \mathbb{R}$ è pari? è dispari?
- 3 Si consideri la funzione $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$, $f(x) = e^{-x}$. Disegnare il grafico G_f di f. l'insieme Im f è superiormente limitato? è inferiormente limitato? Trovare (se esistono) l'estremo superiore, l'estremo inferiore, il massimo e il minimo di Im f.

- **4** Tracciare il grafico qualitativo di $\mathbb{R} \xrightarrow{f} \mathbb{R}$, $f(x) = e^{|x|}$. f è pari? è dispari? Per quali valori del dominio la funzione è negativa?
- 5 Tracciare il grafico qualitativo di

$$(0,+\infty) \stackrel{f}{\longrightarrow} \mathbb{R}, \ f(x) = |\ln x|$$

Determinare sup e inf di *Im f* .

6 Tracciare il grafico qualitativo di

$$\mathbb{R}\setminus\{0\}\stackrel{f}{\longrightarrow}\mathbb{R},\ f(x)=\ln|x|$$

Per quali valori del dominio la funzione risulta positiva? f è pari? è dispari?

7 Determinare gli zeri della funzione $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$,

$$f(x) = 2x^3 - 12x^2 + 22x - 12$$

8 La funzione

$$\mathbb{R}_{\neq 0} \stackrel{f}{\longrightarrow} \mathbb{R}_{\neq 0}, \ f(x) = \frac{1}{x}$$

è iniettiva? È suriettiva? È invertibile?

9 Trovare la funzione inversa di

$$\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}_{>0}, \quad f(x) = e^x$$

e disegnarne il grafico.

Trovare la funzione inversa di

$$\mathbb{R}_{>0} \xrightarrow{f} \mathbb{R}_{>0}, \quad f(x) = x^2$$

e disegnarne il grafico.

Determinare dominio e codominio affinché

$$f(x) = \frac{2x-1}{x-3}$$

sia invertibile. Trovare un'espressione analitica della funzione inversa.

F Si consideri la funzione

$$D \stackrel{f}{\longrightarrow} \mathbb{R}, \quad f(x) = \frac{\sqrt{x - x^2}}{4x^2 - 8x + 3}$$

- Determinare in \mathbb{R} , il dominio massimale D di f
- Per quali $x \in D$, f(x) > 0?