LEZIONE 12

Formula di Taylor con resto di Peano. Funzioni concave e convesse.

Indice degli argomenti

- Formula di Taylor con resto di Peano.
- Formula di Taylor con resto di Lagrange. (Facoltativo).
- Funzioni concave e funzioni convesse.
- Interpretazione del segno della derivata seconda.
- Punti di flesso.

I polinomi di Taylor

Teorema (Polinomio di Taylor)

Sia $I \xrightarrow{f} \mathbb{R}$ una funzione derivabile n volte in un punto $x_0 \in I$ (I intervallo reale, aperto). Allora esiste un polinomio P(x), e uno soltanto, di grado minore o uguale a n, che soddisfa le seguenti condizioni:

$$- P(x_0) = f(x_0);$$

- P(x) ha in comune con f, nel punto x_0 , tutte le prime n derivate, cioè:

$$P'(x_0) = f'(x_0), P''(x_0) = f''(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0)$$

I polinomi di Taylor

Teorema (Polinomio di Taylor. Continuazione.)

Tale polinomio, detto polinomio di Taylor di ordine n di f, centrato in x_0 , è dato da:

$$P(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

PROBLEMA FONDAMENTALE:

È possibile stimare il resto

$$f(x) - P(x)$$
?

Studio locale (vicino a un punto x_0): Formula di Taylor con il resto di Peano

Teorema (Formula di Taylor locale, con il resto di Peano)

Sia I $\stackrel{f}{\longrightarrow} \mathbb{R}$ una funzione il cui dominio I è un intervallo reale, aperto.

Se, per ogni valore di I, f è derivabile n volte e le n derivate sono continue, allora, fissato un punto x_0 in I, vale la Formula di Taylor:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + o((x - x_0)^n)$$

Studio locale (vicino a un punto $x_0 = 0$): Formula di Maclaurin (resto di Peano)

Teorema (Formula di Taylor locale, con il resto di Peano)

In particolare, se $x_0 = 0$, si ha la Formula (detta di Maclaurin):

$$f(x) = f(0) + f'(0)x + \dots + \frac{1}{n!}f^{(n)}(0)x^n + o(x^n)$$

Dimostrazione della Formula di Taylor con il resto di Peano

(Caso n=2.)

Usando due volte di seguito il teorema di L'Hospital, abbiamo

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0) - \frac{1}{2!}f''(x_0)(x - x_0)^2}{(x - x_0)^2} = \lim_{x \to x_0} \frac{f'(x) - f'(x_0) - f''(x_0)(x - x_0)}{2(x - x_0)} = \lim_{x \to x_0} \frac{f''(x) - f''(x_0)}{2} = 0$$

Poiché l'ultimo limite (giustificato dalla continuità di f'' in x_0) esiste e vale 0, per il teorema di de L'Hospital anche il limite iniziale esiste e vale 0. Q.E.D.

Alcuni importanti sviluppi locali di Maclaurin (resto di Peano)

Esponenziale

$$e^{t} = 1 + t + \frac{t^{2}}{2!} + \frac{t^{3}}{3!} + \dots + \frac{t^{n}}{n!} + o(t^{n})$$

Seno

$$\sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \dots + \frac{(-1)^n t^{2n+1}}{(2n+1)!} + o(t^{2n+1})$$

Sviluppi di Taylor, centrati in $t_0 = 0$, con resto secondo Peano

Coseno

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \dots + \frac{(-1)^n t^{2n}}{(2n)!} + o(t^{2n})$$

4 Tangente

$$\tan t = t + \frac{1}{3}t^3 + \frac{2}{15}t^5 + o(t^6)$$

Alcuni importanti sviluppi locali di Maclaurin (resto di Peano)

Potenza di un binomio

$$(1+t)^{\alpha} = 1 + {\alpha \choose 1}t + {\alpha \choose 2}t^2 + \dots + {\alpha \choose n}t^n + o(t^n)$$

$$= 1 + \alpha t + \frac{\alpha(\alpha-1)}{2!}t^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}t^n + o(t^n)$$

6 $\ln(1+t)$

$$\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + \dots + \frac{(-1)^{n+1}}{n} t^n + o(t^n)$$

Un'approssimazione del numero e (di Nepero).

Posto t = 1 nello sviluppo locale dell'esponenziale

$$e^{t} = 1 + t + \frac{t^{2}}{2!} + \frac{t^{3}}{3!} + \dots + \frac{t^{n}}{n!} + o(t^{n})$$

si ottiene:

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

Pochi addendi permettono di trovare un'approssimazione 'precisa'di e (Esercizio). In altre parole: la serie numerica

$$1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+\ldots$$

converge molto rapidamente al numero e.

Un'approssimazione del numero π .

Posto t = 1 nello sviluppo locale dell'arcotangente

$$\arctan t = t - \frac{1}{3}t^3 + \frac{1}{5}t^5 + \dots + \frac{(-1)^n}{2n+1}t^{2n+1} + o(t^{2n+1})$$

si ottiene:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots + \cdots$$

Servono miliardi di addendi per trovare poche cifre decimali corrette di π (Per esercizio, verificare la precedente affermazione utilizzando un programma in Pyton).

Esercizio

Scrivere il polinomio di Taylor di grado 4, centrato in x_0 , delle seguenti funzioni

$$f(x) = \frac{1}{1-x}, \quad x_0 = 0$$

$$f(x) = \frac{1}{\sqrt{1 - x^2}}, \quad x_0 = 0$$

3
$$f(x) = \sqrt[3]{x}, \quad x_0 = 1$$

Esercizio

Utilizzando opportuni sviluppi in serie di Taylor, calcolare i seguenti limiti.

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1 - \frac{1}{2}x}{2x^2}$$

$$\lim_{x\to 0}\frac{e^x-e^{-x}}{x}$$

$$\lim_{x \to 0} \frac{1 + 3x^2 - e^{3x^2}}{x^2 \sin 2x^2}$$

Studio ("globale") su un intervallo: Formula di Taylor con il resto di Lagrange. (Argomento facoltativo.)

Teorema (Formula di Taylor con il resto di Lagrange)

Sia f una funzione derivabile n+1 volte su un intervallo aperto I dell'asse reale e sia x_0 un punto fissato in I. Allora, per ogni altro punto $x \in I$ esiste un punto c, compreso tra x_0 e x, per il quale vale:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

Un'applicazione importante: stima dell'errore. (Argomento facoltativo).

PROBLEMA

Nell'intervallo $[0,\pi/4]$, si approssima $\sin x$ con il polinomio di Taylor

$$P_3(x) = x - \frac{x^3}{3!}$$

Dare una stima dell'errore che si compie.

Soluzione.

$$\sin x = x - \frac{x^3}{3!} + \frac{\cos c}{5!} x^5$$

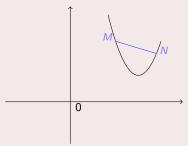
L'errore che si compie è dunque

$$\left| \frac{\cos c}{5!} x^5 \right| \le \frac{(\pi/4)^5}{5!} \simeq 0,0024$$

Funzioni convesse

Definizione

Una funzione f definita su un intervallo aperto I si dice convessa, se per ogni $x_1, x_2 \in I$ il segmento di estremi $M = (x_1, f(x_1))$ e $N = (x_2, f(x_2))$ sta al di sopra del grafico di f.



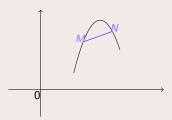
In modo equivalente, se per ogni $x_1, x_2 \in I$ e per $0 \le t \le 1$ si ha:

$$f((1-t)x_1+tx_2) \le (1-t)f(x_1)+tf(x_2)$$

Funzioni concave

Definizione

Una funzione f definita su un intervallo aperto I si dice concava, se (-f) è convessa, cioè se per ogni $x_1, x_2 \in I$ il segmento di estremi $M = (x_1, f(x_1))$ e $N = (x_2, f(x_2))$ sta al di sotto del grafico di f.



In modo equivalente, se per ogni $x_1, x_2 \in I$ e per $0 \le t \le 1$ si ha:

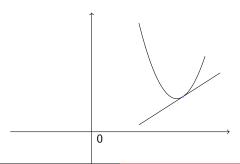
$$f((1-t)x_1+tx_2) \ge (1-t)f(x_1)+tf(x_2)$$

Funzioni convesse derivabili

Teorema

Condizione necessaria e sufficiente perché una funzione f, derivabile in tutto un intervallo [a, b], sia convessa è che la retta tangente al grafico in un suo qualsiasi punto stia tutta al di sotto del grafico.

(Non si riporta la dimostrazione.)



Interpretazione del segno della derivata seconda

Teorema

Supponiamo che f sia derivabile due volte su un intervallo aperto I. Se per ogni $x \in I$ si ha $f''(x) \ge 0$, allora f \tilde{A} convessa.

Dimostrazione

Siano $x_0, x \in I$. Per la formula di Taylor (con il resto di Lagrange) centrata in x_0 , esiste c, compreso tra x e x_0 , per il quale vale:

Ordinata sull grafico di
$$f$$

$$=\underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\text{Ordinata sulla retta tangente}} + \underbrace{\frac{f''(c)}{2}(x - x_0)^2}_{\geq 0}$$

Abbiamo così dimostrato che il grafico di f sta tutto al di sopra della retta tangente nel punto $(x_0, f(x_0))$. Q.E.D.

Punto di flesso

Definizione (Punto di flesso)

Sia $I \xrightarrow{f} \mathbb{R}$ una funzione definita su un intervallo aperto $I \subset \mathbb{R}$. Un punto x_0 si dice punto di flesso per f se ` estremo comune di due intervalli, su uno dei quali la funzione è convessa, e sull'altro concava.

Osservazione

Sia f una funzione due volte derivabile sull'intervallo aperto I e sia $x_0 \in I$. La condizione $f''(x_0) = 0$ è necessaria perché x_0 sia un punto di flesso per f, ma non sufficiente. (Esempio: $f(x) = x^4$).