LEZIONE 6

Funzioni continue Introduzione

Indice degli argomenti

- Definizione $\epsilon \delta$ di continuità.
- Definizione di continuità in termini di intorni.
- Definizione di continuità in termini di limite.
- Primi teoremi sulle funzioni continue.
- La composizione di funzioni continue è continua.

Funzioni continue. Formulazioni intuitive

- Una funzione f è continua in x_0 se i valori f(x) restano vicini quanto si vuole a $f(x_0)$, pur di prendere gli x abbastanza vicini a x_0 .
- Una funzione f è continua in x_0 quando è soddisfatta questa condizione: se la distanza $d(x,x_0)$ è piccola, allora la distanza $d(f(x),f(x_0))$ è piccola.
- Una funzione f è continua in un intervallo (a, b) se è possibile tracciare il grafico di f senza staccare la penna dal foglio.

Definizione di funzione continua. (A.Cauchy, 1820)

Definizione (ε - δ di continuità)

Siano $D \subseteq \mathbb{R}$, $x_0 \in D$ e $D \xrightarrow{f} \mathbb{R}$ una funzione. Si dice che f è continua nel punto $x_0 \in D$, se per ogni $\varepsilon > 0$ esiste un $\delta > 0$ per il quale è soddisfatta questa condizione: per ogni $x \in D$, se

$$d(x,x_0)<\delta$$

allora

$$d(f(x), f(x_0)) < \varepsilon$$

 $D \stackrel{f}{\longrightarrow} \mathbb{R}$ si dice continua in D, se è continua in ogni punto del suo dominio D.

Definizione di funzione continua. (A.Cauchy, 1820)

Ricordando che la distanza d(x, y) tra due numeri reali x, y è il valore assoluto della loro differenza:

$$d(x,y) = |x - y|$$

 $(\mathbb{R} \text{ è uno spazio metrico})$ la definizione di continuità si scrive, in termini più concisi, così

Definizione

Siano $D \subseteq \mathbb{R}$, $x_0 \in D$ e $D \xrightarrow{f} \mathbb{R}$ una funzione. Si dice che f è continua nel punto $x_0 \in D$, se:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \quad \Big[|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon \Big]$$

Esempi di funzioni continue

- 1 Ogni funzione $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$ costante è continua. (Qualunque $\delta > 0$ va bene).
- 2 La funzione identità $\mathbb{R} \stackrel{I}{\longrightarrow} \mathbb{R}$ (per ogni x, I(x) = x) è continua. (Basta prendere $\delta = \varepsilon$).
- 3 La funzione reciproco $\mathbb{R}\setminus\{0\}\stackrel{g}{\longrightarrow}\mathbb{R}$, che manda ogni $x\neq 0$ in g(x)=1/x, è continua.
- 4 $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$, $f(x) = x^2$ è continua.
- $5 \mathbb{R} \xrightarrow{\sin} \mathbb{R} e \mathbb{R} \xrightarrow{\cos} \mathbb{R}$ sono continue.
- $6 \mathbb{R} \xrightarrow{\text{exp}} \mathbb{R}_{>0} \text{ e } \mathbb{R}_{>0} \xrightarrow{\text{log}} \mathbb{R} \text{ sono continue.}$
- ([3], [4], [5] e [6] non sono immediati. Occorre studiarli.).

Intorni di un punto

Definizione (Intorno di un punto)

■ Siano $x_0 \in \mathbb{R}$ e $r \in \mathbb{R}$, r > 0. Si chiama intorno simmetrico (intorno sferico, disco aperto) di centro x_0 e raggio r il sottoinsieme

$$I(x_0; r) = (x_0 - r, x_0 + r) = \{x \in \mathbb{R} \mid x_0 - r < x_0 < x_0 + r\}$$
$$= \{x \in \mathbb{R} \mid d(x, x_0) < r\}$$

■ Più in generale, un insieme $U \subset \mathbb{R}$ si dice un intorno di un punto x_0 se esiste un r > 0 tale che

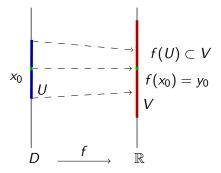
$$U\supset (x_0-r,x_0+r)$$

Definizione topologica di continuità (mediante gli intorni)

La funzione $D \stackrel{f}{\longrightarrow} \mathbb{R}$ è continua in $x_0 \in D \subseteq \mathbb{R}$ se e solo se

per ogni intorno V di $f(x_0)$ esiste un intorno U di x_0 tale che

$$f(U) \subset V$$



Definizione di continuità in termini di limite.

In base alla definizione appena data è immediato verificare che se $x_0 \in D$ è un punto isolato di D, allora ogni funzione è continua in x_0 . Il caso più significativo (e più frequente) è quello di un punto $x_0 \in D$ che sia punto di accumulazione di D

Definizione (Definizione di continuità in termini di limite)

Se $x_0 \in D$ e x_0 è punto di accumulazione di D allora la funzione $\mathbb{D} \xrightarrow{f} \mathbb{C}$ è continua in x_0 se esiste finito il limite di f per $x \to x_0$ e risulta:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

ossia

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$$

Definizione di continuità in termini di limite.

In sintesi:

- I se x_0 appartiene a D e x_0 è un punto isolato di D (cioè x_0 non è punto di accumulazione di D) allora ogni funzione f è continua in x_0 .
- 2 se x_0 appartiene a D e x_0 è un punto di accumulazione di D, allora

$$f$$
 è continua in x_0 \Leftrightarrow $\lim_{x \to x_0} f(x) = f(x_0)$

mentre f non è continua in x_0 se si verifica una delle seguenti condizioni:

$$\lim_{x \to x_0} f(x) \begin{cases} \text{non esiste} \\ \pm \infty \\ L \neq f(x_0) \end{cases}$$

Permanenza del segno.

Teorema (Permanenza del segno)

Sia $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$ una funzione continua nel punto $x_0 \in \mathbb{R}$ e positiva in x_0 :

$$f(x_0) > 0$$

allora esiste un intorno $U \subset \mathbb{R}$ di x_0 in cui la funzione f si mantiene positiva:

$$\forall x \in U \quad f(x) > 0$$

Ovviamente, se $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$ è continua in x_0 e $f(x_0) < 0$, allora esiste un intorno $U \subset \mathbb{R}$ di x_0 in cui la funzione f si mantiene negativa: $\forall x \in U \quad f(x) < 0$.

Permanenza del segno

Dimostrazione

 $f(x_0)>0$, per ipotesi. Allora ogni intorno sufficientemente piccolo di $f(x_0)$ contiene solo numeri positivi. Precisamente, fissato un numero positivo $\varepsilon < f(x_0)$, l'intorno aperto $W=(f(x_0)-\varepsilon,f(x_0)+\varepsilon)$ di $f(x_0)$ contiene soltanto numeri positivi (fare una figura). Fissato un tale W, poiché f è continua in x_0 , esiste un intorno U di x_0 tale che $f(U)\subset W$. Siccome in W ci sono solo numeri positivi, si ha f(x)>0, per ogni $x\in U$.

Primi teoremi sulle funzioni continue

Teorema (Somma di funzioni continue)

La somma di due funzioni reali di variabile reale, entrambe continue in x_0 , è continua in x_0 , cioè

$$\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R} \ e \ \mathbb{R} \stackrel{g}{\longrightarrow} \mathbb{R} \ \text{continue in } x_0 \ \Longrightarrow \ \mathbb{R} \stackrel{f+g}{\longrightarrow} \mathbb{R} \ \text{continua in } x_0$$

Teorema (Prodotto di funzioni continue)

Il prodotto di due funzioni reali di variabile reale, entrambe continue in x_0 , è continua in x_0 , cioè

$$\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R} \ e \ \mathbb{R} \stackrel{g}{\longrightarrow} \mathbb{R} \ \text{continue in } x_0 \ \implies \ \mathbb{R} \stackrel{fg}{\longrightarrow} \mathbb{R} \ \text{continua in } x_0$$

Primi teoremi sulle funzioni continue

Teorema (Quoziente di funzioni continue)

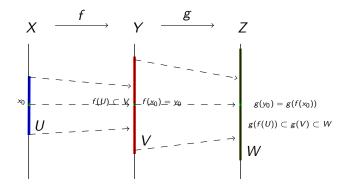
Siano f(x) e g(x) due funzioni continue a valori reali, con $g(x) \neq 0$ per ogni x. Allora il quoziente $\frac{f(x)}{g(x)}$ è una funzione continua.

 $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R} \ e \ \mathbb{R} \stackrel{g}{\longrightarrow} \mathbb{R} \ \text{continue in } x_0 \ \implies \ \mathbb{R} \stackrel{f/g}{\longrightarrow} \mathbb{R} \ \text{continua in } x_0$

La funzione composta di funzioni continue è continua

Teorema

Se $X \xrightarrow{f} Y$ e $Y \xrightarrow{g} Z$ sono continue, $X \xrightarrow{g \circ f} Z$ è continua.



Dimostrazione

Siano:
$$x_0 \in X$$
; $y_0 = f(x_0)$; $z_0 = g(y_0)$.
(Quindi: $(g \circ f)(x_0) = g(f(x_0)) = g(y_0) = z_0$.)

- Sia W un intorno di $z_0 = g(y_0)$. Poiché g è continua in y_0 , esiste un intorno V di y_0 tale che $g(V) \subset W$.
- Poiché V è intorno di $f(x_0)(=y_0)$ e f è continua in x_0 , esiste un intorno U di x_0 tale che $f(U) \subset V$.
- Allora $(g \circ f)(U) = g(f(U)) \subset g(V) \subset W$. $(g(f(U)) \subset g(V))$ perché $f(U) \subset V$.)

Abbiamo così dimostrato che:

per ogni intorno W di $z_0 = (g \circ f)(x_0)$ esiste un intorno U di x_0 tale che $(g \circ f)(U) \subset W$.

Dunque $(g \circ f)$ è continua in x_0 .

Applicazioni: Esercizio

Esercizio

Dimostrare che la funzione

$$g(x) = \frac{\sin(x^3) + x^4}{1 + x^2 + \cos^2(x)}, \quad x \in \mathbb{R}$$

è continua.

Soluzione La funzione g si ottiene da funzioni continue mediante somme, prodotti, composizione, passaggio al reciproco (con denominatore \neq 0).

Le funzioni continue preservano i limiti di successioni.

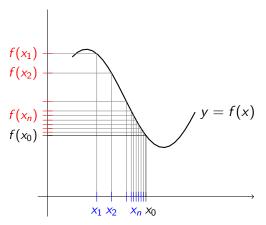


Figure: La funzione y = f(x) è continua in x_0 se e solo se vale la seguente proprietà: $x_n \longrightarrow x_0 \Rightarrow f(x_n) \longrightarrow f(x_0)$.

Le funzioni continue preservano i limiti di successioni.

Teorema (Continuità per successioni)

Siano $D \subset \mathbb{R}$, $D \xrightarrow{f} \mathbb{R}$ una funzione, x_0 un punto di D. I due seguenti enunciati sono equivalenti:

- (1) $f \in continua in x_0$.
- (2) Per ogni successione (x_n) in D,

$$x_n \xrightarrow[n \to +\infty]{} x_0 \longrightarrow f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$$

(cioè: se
$$\lim_{n\to+\infty} x_n = x_0$$
, allora $\lim_{n\to+\infty} f(x_n) = f(x_0)$.)

In breve: Le funzioni continue sono le funzioni che preservano i limiti di successioni.

Una funzione discontinua in ogni punto

Criterio per stabilire la discontinuità di una funzione.

Siano $D \subset \mathbb{R}$, $D \xrightarrow{f} \mathbb{R}$ una funzione, x_0 un punto di D. Se esiste una successione (x_n) tale che $x_n \to x_0$ ma $f(x_n) \not\to f(x_0)$, allora f non è continua in x_0 .

Esempio. Si consideri la funzione $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$,

$$f(x) = \begin{cases} 1 & \text{per } x \text{ irrazionale} \\ 0 & \text{per } x \text{ razionale} \end{cases}$$
 (1)

La funzione f è discontinua in ogni punto. Infatti, fissiamo un qualunque x_0 irrazionale. Siccome $\mathbb Q$ è denso in $\mathbb R$, esiste una successione x_n di razionali tale che $x_n \to x_0$. Ma $f(x_n) \not\to f(x_0)$, perché $f(x_n) = 0$ e $f(x_0) = 1$. Pertanto, f non è continua nel numero irrazionale x_0 . In modo analogo (usando il fatto che gli irrazionali sono densi in $\mathbb R$) si dimostra che f è discontinua anche in ogni numero razionale.