Algoritmo di Erone

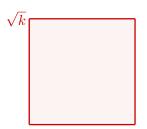
Mauro Saita¹

e-mail: maurosaita@tiscalinet.it

1 Come approssimare la radice quadrata di un numero?

Problema 1.1.

Trovare un algoritmo per calcolare, con la precisione desiderata, la radice quadrata del numero k ($k \ge 0$), ossia trovare un algoritmo che consenta di trovare le prime n cifre decimali esatte del lato del quadrato di area k.



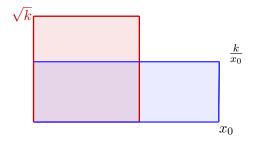
 $^{^1\}mathrm{Nome}$ file: algoritmo_di_Erone.tex

2 Algoritmo di Erone

L'algoritmo di Erone rappresenta una possibile soluzione (efficiente) del problema. È il procedimento usato dalle calcolatrici e dai linguaggi di programmazione.

Descrizione dell'algoritmo.

Passo 0. Si scelga un numero reale $x_0 > \sqrt{k}$ e si costruisca il rettangolo di (area k e) dimensioni x_0 e $\frac{k}{x_0}$.

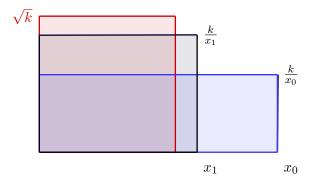


Passo 1. Si calcola la media aritmetica di $x_0, \frac{k}{x_0}$ (dimensioni del rettangolo):

$$x_1 = \frac{1}{2} \left(x_0 + \frac{k}{x_0} \right)$$

e si costruisce il nuovo rettangolo di (area k e) dimensioni x_1 e $\frac{k}{x_1}$. Il numero x_1 approssima il numero \sqrt{k} per eccesso, mentre $\frac{k}{x_1}$ per difetto. Risulta

$$\sqrt{k} \le x_1 \le x_0$$



Passo 2 Si calcola la media aritmetica di x_1 e $\frac{k}{x_1}$:

$$x_2 = \frac{1}{2} \left(x_1 + \frac{k}{x_1} \right)$$

e si costruisce il rettangolo di (area k e) dimensioni: x_2 e $\frac{k}{x_2}$. Il numero x_2 approssima il numero \sqrt{k} per eccesso, mentre $\frac{k}{x_2}$ per difetto. Risulta

$$\sqrt{k} \le x_2 \le x_1$$

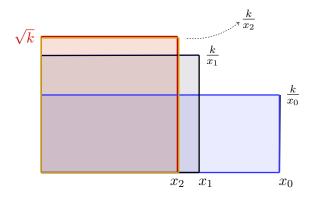
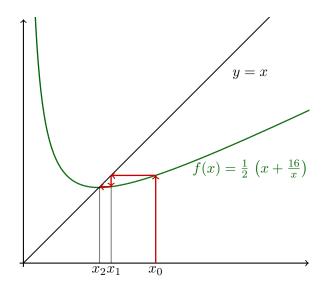


Figura 1: La figura mostra che già alla terza iterazione si ottiene una buona approssimazione del valore cercato.

3 L'essenza del metodo: la successione per ricorrenza.



Teorema 3.1. Per la successione (definita per ricorrenza)

$$\begin{cases} x_{n+1} = \frac{1}{2} \left(x_n + \frac{k}{x_n} \right) \\ x_0 = \alpha & dove \ (\alpha > 0) \end{cases}$$

valgono le seguenti proprietà :

- (a) i termini della successione $(x_n, per ogni n)$ sono positivi.
- (b) La successione è strettamente decrescente: $x_n > x_{n+1}$, per ogni n.
- (c) $x_n \longrightarrow \sqrt{k}$, per $n \longrightarrow +\infty$.
- (d) $x_n \sqrt{k} < \frac{x_0 \sqrt{k}}{2^n}$.
- (e) $x_{n+1} \sqrt{k} < x_n x_{n+1}$.

La dimostrazione si trova, per esempio, in:

https://www.mat.uniroma1.it/mat_cms/materiali/2013-2014/finzivita-22736-Erone_LPC.pdf