Liceo Scientifico "L. Cremona" - Milano.		Classe:
Verifica di matematica. Rette e piani nello spazio.		Docente: M. Saita
Cognome:	Nome:	Maggio 2016

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo.¹

Esercizio 1. Trovare centro e raggio della circonferenza di equazioni

$$\begin{cases} (x-2)^2 + y^2 + (z+1)^2 &= 16\\ 2x - y - 2z &= 0 \end{cases}$$

Esercizio 2. Trovare le equazioni cartesiane delle sfere di raggio 1 che sono tangenti al piano π di equazione

$$3x + 2y - \sqrt{3}z - 1 = 0$$

nel punto A = (1, -1, 0).

Esercizio 3. Si considerino le rette di equazioni parametriche:

$$r: \left\{ \begin{array}{lll} x & = & 1-t \\ y & = & t \\ z & = & 2 \end{array} \right. & s: \left\{ \begin{array}{lll} x & = & -2u \\ y & = & 1+u \\ z & = & u \end{array} \right. & u \in \mathbb{R}$$

- 1. Stabilire la mutua posizione di r e s nello spazio.
- 2. Nel caso le rette siano sghembe, trovare la distanza di r da s.

Esercizio 4. Sia A = (0, -1, 2) e π il piano di equazione cartesiana x - 3y + z - 2 = 0. Trovare il simmetrico di A rispetto a π .

Esercizio 5. Sia r la retta di equazioni cartesiane

$$\begin{cases} x+y-z &= 0\\ 2x-y+z &= 0 \end{cases}$$

Scrivere l'equazione del piano π che contiene r e $P_0 = (1, 1, 1)$.

¹File tex: verifica_06_rette_piani_2016.tex

Soluzioni

Esercizio 1.

Raggio della circonferenza: $r = 2\sqrt{3}$.

Centro della circonferenza: $C = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$.

Esercizio 2.

Le sfere di raggio 1 tangenti a π in A sono ovviamente due. Le coordinate dei loro centri sono $C_1 = \left(\frac{7}{4}, -\frac{1}{2}, -\frac{\sqrt{3}}{4}\right)$ e $C_2 = \left(\frac{1}{4}, -\frac{3}{2}, +\frac{\sqrt{3}}{4}\right)$.

Le equazioni delle due sfere sono

$$S_1: \quad \left(x - \frac{7}{4}\right)^2 + \left(y + \frac{1}{2}\right)^2 + \left(z + \frac{\sqrt{3}}{4}\right)^2 = 1$$

$$S_2: \quad \left(x - \frac{1}{4}\right)^2 + \left(y + \frac{3}{2}\right)^2 + \left(z - \frac{\sqrt{3}}{4}\right)^2 = 1.$$

Esercizio 3.

1. Le rette r, s sono sghembe.

2. La distanza di r da s è $d(r,s) = \frac{2\sqrt{3}}{3}$.

Esercizio 4.

Il simmetrico di A rispetto a π è il punto

$$A' = \left(-\frac{6}{11}, +\frac{7}{11}, +\frac{16}{11}\right)$$

Esercizio 5.

Equazione cartesiana del piano π :

$$y - z = 0$$