Liceo Scientifico "L. Cremona" - Milano. Verifica di matematica. Geometria analitica.						Classe: Docente: M. Saita	
Cognome:			Nome:			Aprile 2017	
Es. 1 3.0 p.ti	Es. 2 1.5 p.ti	Es. 3 1.5 p.ti	Es. 4.1 1.0 p.ti	Es. 4.2 1.0 p.ti	Es. 1.0 j		Totale

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo.¹

Esercizio 1. Tracciare il grafico della funzione omografica

$$(-\infty, 2) \cup (2, +\infty) \longrightarrow \mathbb{R}, \quad y = \frac{x+2}{2x-4}$$

Utilizzando il grafico trovato nel punto precedente tracciare quello delle seguenti funzioni

(a)
$$y = \frac{|x| + 2}{2|x| - 4}$$

(b)
$$y = \frac{|x+2|}{2x-4}$$

Esercizio 2. Scrivere una equazione dell'iperbole avente centro di simmetria nel punto O'=(-3,1), asintoti di coefficiente angolare $\pm\frac{1}{2}$, asse trasverso parallelo all'asse y di lunghezza 2.

Esercizio 3. Stabilire quale curva è definita dalla seguente equazione

$$4x^2 + 9y^2 - 16x - 54y + 61 = 0$$

¹File tex: verifica_05_geometria_analitica_2016.tex

Esercizio 4. Si consideri il fascio di curve aventi per equazione

$$(k+1)y + (k-1)x^2 + 2x(1-2k) + 3 - 5k = 0$$
 $k \in \mathbb{R}$

- 1. Stabilire la natura delle curve del fascio e per quali valori di k in \mathbb{R} si ottengono curve degeneri, precisando di quali curve si tratta.
- 2. Determinare una equazione della circonferenza avente per diametro i punti base del fascio.
- 3. Scrivere una equazione dell'ellisse avente eccentricità $e=\frac{4}{5}$ e per asse minore il segmento avente per estremi il punto base del fascio di ascissa negativa e il suo punto simmetrico rispetto alla retta x-2=0

Risposte

Esercizio 1.

Esercizio 2.

$$\frac{(x+3)^2}{4} - (y-1)^2 = -1$$

Esercizio 3.

$$\frac{(x-2)^2}{9} + \frac{(y-3)^2}{4} = 1$$

Esercizio 4.

1. Fascio di parabole. Per k=-1 si ottiene la coppia di rette di equazioni x=4 e x=-1; per k=1 si ottiene la retta di equazione x-y+1=0.

2.
$$\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 - \frac{25}{2} = 0$$

3.
$$\frac{(x-2)^2}{9} + \frac{y^2}{25} = 1$$