Isometrie. Prima parte.

Mauro Saita

maurosaita@tiscalinet.it

Versione provvisoria. Ottobre 2011.

Indice

1	Defi	inizioni e assiomi	1
2	Ison	metrie	4
3	Sim	Simmetrie assiali. Rette ortogonali	
	3.1	Asse di un segmento	6
	3.2	Simmetrie centrali	7
	3.3	Le simmetrie assiali generano le isometrie	9

Queste note si ispirano al libro di G. Prodi, *Matematica come scoperta* (vol 1 e 2), Ed. G. D'Anna, Firenze, 1975. Il libro è stato ripubblicato di recente, suddiviso per moduli. Per ulteriori approfondimenti si rimanda a: G. Prodi, A. Bastianoni, *Scoprire la matematica - Geometria del piano*, Ghisetti e Corvi Editori, Milano, 2000.

1 Definizioni e assiomi

Qui si è scelto di indicare con la lettera π il piano, con le lettere $r, s, t \dots$ le rette e con A, B, C, \dots i punti. Il piano π è da intendersi come un oggetto 'geometrico' e i punti che lo costituiscono sono da intendersi come punti 'geometrici' e non come coppie ordinate di numeri reali. Gli assiomi utilizzati via via in questi appunti sono tutti riportati in questa sezione.

Gli assiomi della distanza

A ogni coppia di punti P, Q del piano ordinario π è associato un numero positivo o nullo che si chiama distanza di P da Q (si scrive: d(P,Q) oppure \overline{PQ})

Gli assiomi della distanza sono i seguenti:

A1.1 Per ogni $P, Q \in \pi$

- se $P \neq Q$ allora d(P,Q) > 0
- se P = Q allora d(P, Q) = 0

A1.2 (Simmetria). Per ogni $P, Q \in \pi$

$$d(P,Q) = d(Q,P)$$

A1.3 (Disuguaglianza triangolare). Per ogni $P, Q, R \in \pi$

$$d(P,Q) \le d(P,R) + d(R,Q)$$

 $^{^{0}}$ Nome file: "isometrie-01-2011.tex"

Gli assiomi della retta.

- **A2.1** Per due punti distinti del piano π passa una e una sola retta.
- **A3.1** Nel piano π ci sono almeno tre punti non allineati (cioè una retta non esaurisce tutto il piano).
- **A4.1** Su ogni retta r del piano esistono due relazioni d'ordine (che si denotano con il simbolo '<') per cui valgono le seguenti proprietà :

per ogni $P, Q, R \in r$

- se P < Q < R allora d(P,R) = d(P,Q) + (Q,R)
- se P,Q,R sono tre punti del piano π per i quali d(P,R)=d(P,Q)+(Q,R) allora R è allineato con P e Q e si ha

$$P < Q < R$$
 oppure $R < Q < P$

A5.1 Fissata una semiretta r di origine O e un numero reale non negativo x, esiste ed è unico il punto $P \in r$ per il quale risulta:

$$d(O, P) = x$$

- **A6.1** Sia r una retta del piano π . L'insieme complementare di r risulta suddiviso in due regioni, dette *semipiani*, aventi le seguenti proprietà
 - ullet Il segmento che congiunge due punti di uno stesso semipiano non taglia la retta r.
 - ullet Il segmento che congiunge due punti di semipiani distinti taglia la retta r in esattamente un punto.

L'assioma A6.1 dice, tra l'altro, che il piano π è suddiviso da una retta r in tre insiemi disgiunti cioè

$$\pi = \sigma_1 \cup \sigma_2 \cup r$$

dove σ_1 , σ_2 sono i due semipiani individuati da r.

Si dice che la retta r è il bordo dei due semipiani opposti σ_1 , σ_2 .

Gli assiomi delle isometrie.

Un'isometria del piano e una trasformazione (biunivoca) del piano in sè che conserva le distanze (la definizione precisa è data nella sezione seguente).

L'assioma seguente garantisce l'esistenza di isometrie piane diverse dall'identità . Con la terna (O, r, σ) si intende indicare un punto O del piano, una semiretta r di origine O e uno dei due semipiani σ in cui la retta che contiene la semiretta r divide il piano.

- **A7.1** Siano (O, r, σ) e (O', r', σ') due qualsiasi terne del piano π . Esiste una e una sola isometria $\pi \xrightarrow{F} \pi$ che manda
 - O in O';
 - la semiretta r nella semiretta r';
 - il semipiano σ nel semipiano σ'

Una terna (O, r, σ) si può rappresentare servendosi di una bandierina: il piede della bandierina individua il punto O, l'asta individua la semiretta r e il drappo individua il semipiano σ .

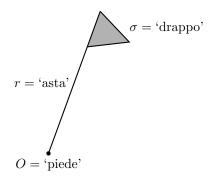


Figura 1: Si può rappresentare la terna (O, r, σ) con una bandierina.

L'assioma A7.1 consente di rappresentare un'isometria mediante una coppia di bandierine (quella di partenza e quella di arrivo); questo assioma afferma che esiste un'unica isometria che trasforma la prima bandierina nella seconda.

A8.1 Data una retta r e un punto $P \in r$ esiste un'unica retta s perpendicolare a r e passante per P.

Definizione 1.1 (Angolo). Siano r e s due semirette del piano π aventi l'origine in comune. Si chiama angolo la coppia ordinata (r,s). Si chiama invece regione angolare di un angolo la parte convessa di piano delimitata da r e s.

Nel caso in cui (r, s) siano opposte la regione angolare non è univocamente determinata perchè le due semirette dividono il piano in due semipiani e quindi sarà necessario precisare quale tra le due regioni convesse si vuole considerare.

2 Isometrie

Definizione 2.1. Un'isometria è una trasformazione¹ del piano in sé che conserva le distanze. In altre parole, indicato con π il piano, un'isometria è una funzione biunivoca

$$\pi \xrightarrow{F} \pi$$

per la quale vale la seguente proprietà : per ogni $A, B \in \pi$

$$d(A,B) = d(F(A), F(B))$$

Teorema 2.2. Un isometria trasforma una retta in una retta.

IPOTESI:

1) $\pi \xrightarrow{F} \pi$ è un'isometria del piano π

(2) $A, B, C \in r$

TESI:

$$F(A), F(B), F(C) \in r'$$

[Fare una figura]

Dimostrazione.

Senza perdere in generalità si supponga che B si trovi tra A e C (cioè si supponga che sia A < B < C oppure C < B < A). Per l'assioma A4.1 si ha:

$$d(A,C) = d(A,B) + d(B,C)$$

Posto A' = F(A), B' = F(B), C' = F(C) e ricordando che un'isometria conserva le distanze si ottiene

$$d(A', C') = d(A', B') + d(B', C')$$

Ancora per l'assioma A4.1 si deduce che i punti A', B', C' sono allineati (cioè giaciono su una retta r') e che B' si trova tra A' e C'

Queste argomentazioni permettono di concludere che ogni punto della retta r è trasformato dall'isometria F in un punto della retta r'. Poichè ogni punto di r' è trasformato dall'isometria F^{-1} (l'isometria inversa di F) in un punto di r si ha la tesi.

Esercizio 2.3. Dimostrare che un'isometria trasforma il punto medio di un segmento nel punto medio del segmento trasformato.

Esercizio 2.4. Dimostrare che un'isometria trasforma semirette in semirette.

Esercizio 2.5. Dimostrare che se A e B ($A \neq B$) sono due punti fissi di un'isometria allora tutti i punti della retta individuata A e B sono fissi.

Esercizio 2.6. Dimostrare che un'isometria che scambia tra loro due punti A e B ha almeno un punto fisso.

Esercizio 2.7. Dimostrare che un'isometria che lascia fissi tre punti non allineati è l'identità .

¹Il termine trasformazione è qui usato per indicare una funzione biunivoca. Una trasformazione del piano in sè è allora una funzione biunivoca avente per dominio e codominio il piano π .

Per quanto riguarda la composizione di isometrie vale il seguente importante teorema.

Teorema 2.8. La composizione di due isometrie è una isometria.

IPOTESI: $\pi \xrightarrow{G} \pi, \ \pi \xrightarrow{F} \pi \text{: isometrie.}$ TESI: $\pi \xrightarrow{G \circ F} \pi \text{ è un'isometria.}$

La dimostrazione è lasciata per esercizio.

3 Simmetrie assiali. Rette ortogonali

Definizione 3.1 (Simmetria assiale.). $Si\ chiama\ simmetria\ assiale\ rispetto\ alla\ retta\ r\ la\ trasformazione$

$$\pi \xrightarrow{S_r} \pi$$

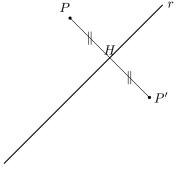
del piano in sé con queste proprietà:

- 1. S_r mantiene fissi tutti i punti di r;
- 2. S_r trasforma ciascuno dei due semipiani individuati da r nell'altro;
- 3. S_r è involutoria, cioè $S_r \circ S_r$ è l'identità .

Le simmetrie assiali possono essere utilizzate per introdurre il concetto di *rette perpendicolari*. Diversamente da quanto si è già detto in questo corso di studi, si può dare la seguente definizione, equivalente a quella nota

Definizione 3.2 (Rette perpendicolari.). Una retta s si dice perpendicolare (ortogonale) alla retta r se s è diversa da r e se viene trasformata in sè dalla simmetria S_r di asse r.

Per descrivere la simmetria assiale di asse r si può prendere un foglio di carta e piegarlo lungo la retta r, in questo modo tutti i punti di uno dei due semipiani combaciano con i punti dell'altro mentre i punti di r rimangono fissi [fare una figura]. Per determinare l'immagine di un punto $P \in \pi$ mediante la simmetria $\pi \xrightarrow{S_r} \pi$ si può anche ricorrere alla seguente costruzione: si disegni la retta t perpendicolare a r e passante per P. Indicato con H il piede di tale perpendicolare, il punto $P' = S_r(P)$ è il punto della retta t (diverso da P) per il quale risulta



d(P,H) = d(H,P')

Figura 2

Per poter scoprire altre proprietà delle simmetrie sarà utile il seguente teorema sulle isometrie, che qui si enuncia senza dimostrazione.

Teorema 3.3. Un'isometria trasforma una coppia di rette ortogonali in una coppia di rette ortogonali. Il punto O, intersezione della prima coppia di rette, è trasformato in O', punto di intersezione della seconda coppia di rette.

IPOTESI:

- 1) $\pi \stackrel{F}{\longrightarrow} \pi$ è una isometria
- 2) r, s: coppia di rette ortogonali

TESI:

- 1) $r^\prime = F(r)$ e $s^\prime = F(s)$ sono una coppia di rette ortogonali
- 2) F(O) = O'

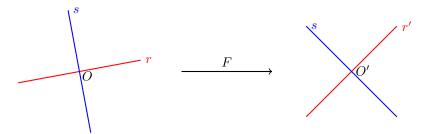


Figura 3: L'isometria F trasforma rette ortogonali in rette ortogonali.

3.1 Asse di un segmento

Teorema 3.4. Sia r una retta del piano, σ_1 , σ_2 i due semipiani individuati da r e $\pi \xrightarrow{S_r} \pi$ la simmetria di asse r. Si fissi un punto A del semipiano σ_1 e si consideri $A' = S_r(A)$, simmetrico di A rispetto a r. Allora si ha

 $per\ ogni\ P\in\sigma_1$

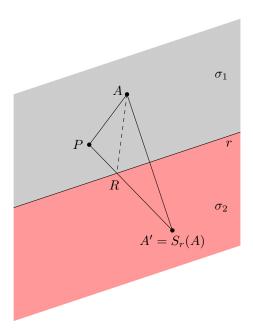


Figura 4

Dimostrazione.

I punti P e A' si trovano in semipiani opposti e, di conseguenza, il segmento PA' taglia la retta r in un punto (assioma A6.1), che in figura è denotato con R. Utilizzando l'assioma A1.3 (disuguaglianza triangolare) si ottiene

$$d(P, A) < d(P, R) + d(R, A)$$
 (3.1)

Il segno di uguaglianza nella precedente disuguaglianza non può valere perchè, per ipotesi $P \in \sigma_1$ e quindi non sta su R. Inoltre, poichè la simmetria $\pi \xrightarrow{S_r} \pi$ è un'isometria (conserva le distanze), dalla disuguaglianza (3.1) si deduce:

$$d(P, A) < d(P, R) + d(R, A') = d(P, A')$$
(3.2)

Dalla dimostrazione di questo teorema si deduce [esercizio] che:

- i punti del semipiano σ_1 sono più vicini ad A che ad A';
- i punti del semipiano σ_2 sono più vicini ad A' che ad A;
- i punti della retta r hanno la stessa distanza da A e da A';

Definizione 3.5 (Asse di un segmento). Fissati due punti A, A' del piano π , si chiama asse del segmento AA', l'asse dell'unica simmetria che scambia A con A'

In altre parole, l'asse del segmento AA' è la retta ortogonale al segmento AA' che passa per il suo punto di mezzo. L'assioma A8.1 assicura che tale retta è unica. Dal teorema appena dimostrato si deduce che l'asse di AA' è l'insieme di tutti e soli i punti del piano che si trovano a uguale distanza da A e A'.

3.2 Simmetrie centrali

Definizione 3.6. Fissato un punto 0 nel piano π , si chiama simmetria centrale di centro O la trasformazione

$$\pi \xrightarrow{S_O} \pi$$

del piano in sé così definita

- $S_O(O) = O$, cioè al centro O è associato O stesso.
- Se $P \neq O$ il punto $P' = S_O(P)$ è così determinato: si tracci la retta OP, il punto P' è il punto che si trova sulla semiretta di origine O non contenente P per il quale d(O, P') = d(O, P).

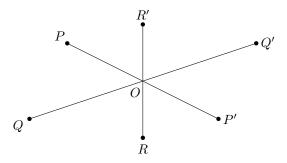


Figura 5: Simmetria di centro O.

Esercizio 3.7. Convincersi che una qualsiasi simmetria centrale $\pi \xrightarrow{S_A} \pi$ è biettiva, trasforma rette passanti per O in rette passanti per O e ha un unico punto fisso, il polo O.

Teorema 3.8. Una simmetria $\pi \xrightarrow{S_O} \pi$ di centro O si può ottenere come composizione di due qualsiasi simmetrie assiali aventi gli assi ortogonali tra loro e il punto comune in O.

IPOTESI:

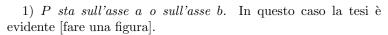
- 1) $\pi \xrightarrow{S_O} \pi$: simmetria centrale di centro O;
- 2) a, b: coppia di rette ortogonali che si incontrano in O;
- 3) $\pi \xrightarrow{S_a} \pi$, $\pi \xrightarrow{S_b} \pi$: simmetrie assiali rispettivamente di asse a e b.

TESI:

 $S_O = S_a \circ S_b$. In altri termini, se P è un punto del piano π allora $S_a(S_b(P))$ coincide con il simmetrico di P rispetto al centro O.

Dimostrazione.

La dimostrazione si divide in due parti



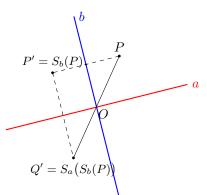


Figura 6

- 2) P non sta su nessuno dei due assi. Si determini il punto P' simmetrico di P rispetto alla retta b; il segmento PP' è ortogonale a b. Si esegua ora la simmetria rispetto alla retta a: posto $S_a(P) = Q$ e $S_a(P') = Q'$, il segmento PP' viene trasformato nel segmento QQ'. mentre la retta b viene trasformata in sé.
- I punti Q e Q' sono simmetrici rispetto all'asse b, infatti ogni isometria trasforma rette ortogonali in rette ortogonali, quindi il segmento QQ' è ortogonale a b; inoltre, il punto medio di PP' viene trasformato nel punto medio di QQ'.
- I segmenti PQ' e P'Q si intersecano in un punto dell'asse b. Il segmento PQ' viene trasformato dalla simmetria di asse b nel segmento P'Q. Il segmento PQ' interseca l'asse b (perchè i punti P e Q' sono in semipiani opposti rispetto a b) e il punto di intersezione, che è un punto fisso della simmetria S_b , appartiene anche al segmento P'Q
- I segmenti PQ' e P'Q si intersecano in un punto dell'asse a. Il segmento PQ' viene trasformato dalla simmetria di asse a nel segmento P'Q. Il segmento PQ' interseca l'asse a (perchè i punti P e Q' sono in semipiani opposti rispetto ad a) e il punto di intersezione, che è un punto fisso della simmetria S_a , appartiene anche al segmento P'Q

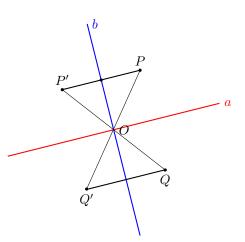


Figura 7

Quindi, il punto d'intersezione dei segmenti PQ' e P'Q appartiene sia all'asse b che all'asse a e, di conseguenza coincide con O. Infine, poiché P' è il simmetrico di P mediante S_b e Q' è il simmetrico di P' mediante S_a si ha

$$d(O,P) = d(O,P') \tag{3.3}$$

$$d(O, P') = d(O, Q') \tag{3.4}$$

Da (3.3) e (3.4) (per la proprietà transitiva dell'uguaglianza) si ricava

$$d(O,P) = d(O,Q') \tag{3.5}$$

Questo conclude la dimostrazione.

Esercizio 3.9. Dimostrare che una simmetria centrale $\pi \xrightarrow{S_O} \pi$ è una isometria.

Esercizio 3.10. Dimostrare che ogni simmetria centrale $\pi \xrightarrow{S_O} \pi$ è involutoria.

Suggerimento. Bisogna dimostrare che $S_O \circ S_O = 1_\pi$. Ogni isometria centrale si ottiene come composizione di due simmetrie assiali con assi ortogonali tra loro (si veda il teorema (3.8)); posto $S_O = S_a \circ S_b$...

3.3 Le simmetrie assiali generano le isometrie

Tra tutte le isometrie le simmetrie assiali ricoprono un ruolo fondamentale nel senso che componendole in modo opportuno si possono ottenere tutte le altre isometrie.

Teorema 3.11. Ogni isometria $\pi \xrightarrow{F} \pi$ si può ottenere come composizione di non più di tre simmetrie assiali.

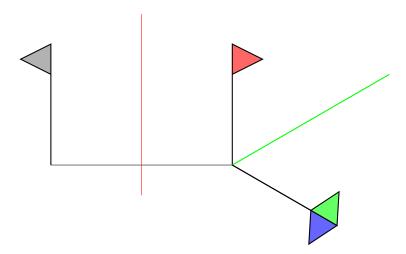


Figura 8: Per trasformare la bandierina grigia nella bandierina blu servono tre simmetrie assiali.

Utilizzando l'ideografia delle bandierine, il teorema precedente afferma che comunque si dispongano nel piano π due bandierine uguali esiste ed è unica l'isometria che porta la prima bandierina sulla seconda.

Dimostrazione. La dimostrazione è lasciata per esercizio (servirsi della figura 8).