La scoperta dei numeri irrazionali.

Mauro Saita

e-mail: maurosaita@tiscalinet.it Versione provvisoria, ottobre 2012.

Indice

1 Il lato e la diagonale del quadrato sono incommensurabili.																1																						
	1.1	Esercizi																																				2

1 Il lato e la diagonale del quadrato sono incommensurabili.

Non sempre la misura di un segmento si può esprimere mediante un numero razionale.

Si consideri il quadrato di lato uno e sia d la misura della sua diagonale. Il Teorema di Pitagora afferma che la somma delle aree dei quadrati costruiti sui cateti è uguale all'area del quadrato costruito sull'ipotenusa, cioè $d^2 = 1 + 1 = 2$ e $d = \sqrt{2}$.

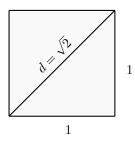


Figura 1: La diagonale del quadrato di lato 1 misura $\sqrt{2}$. Di che numero si tratta?

Vale il seguente

Teorema 1.1 (Scuola pitagorica. 6 a.C.). $\sqrt{2}$ non è un numero razionale.

Prima dimostrazione.

Si supponga, per assurdo, che $\sqrt{2} = \frac{p}{q}$ con p, q numeri interi primi fra loro (M.C.D(p,q) = 1).

Dall'uguaglianza precedente si ottiene $2 = \frac{p^2}{q^2}$ cioè

$$2q^2 = p^2$$

Pertanto p^2 e psono numeri pari $^1.$ Posto allora $p=2m\ (m\in\mathbb{N})$ si ottiene:

Vale il seguente fatto:

(i) Se
$$x \in \mathbb{N}$$
 e x^2 è pari allora x è pari.

Si osservi che la stessa proprietà si può formulare in modo equivalente così:

(ii) Se
$$x \in \mathbb{N}$$
 e x è dispari allora x^2 è dispari.

La dimostrazione è lasciata per esercizio.

Nome file: irrazionali-2012.tex'

$$2q^2 = p^2 = (2m)^2 = 4m^2$$

Dividendo per 2 si ricava:

$$q^2 = 2m^2$$

Questa uguaglianza dice che q^2 è pari e quindi anche q deve essere pari.

Riassumendo, si è giunti ad affermare che p e q sono entrambi pari, contro l'ipotesi che i due numeri siano primi fra loro.

 $Seconda\ dimostrazione.$

Si supponga, per assurdo, che $\sqrt{2} = \frac{p}{q}$ con p, q numeri interi primi fra loro (M.C.D(p,q) = 1).

Dall'uguaglianza precedente si ottiene $\frac{p^2}{q^2} = 2$, cioè

$$p^2 = 2q^2 (1.1)$$

Se p=1 si ottiene immediatamente $1=2q^2$, che è assurdo. Se invece p>1, per il teorema fondamentale dell'aritmetica², il numero p si fattorizza in modo unico (a meno dell'ordine dei fattori) nel prodotto dei suoi numeri primi, cioè

$$p = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_n^{\alpha_n} \tag{1.2}$$

Elevando al quadrato l'ultima uguaglianza e da (1.1) si ricava

$$p^{2} = 2q^{2} = p_{1}^{2\alpha_{1}} \cdot p_{2}^{2\alpha_{2}} \cdot \dots \cdot p_{n}^{2\alpha_{n}}$$
(1.3)

Quindi i numeri primi che costituiscono la fattorizzazione di p^2 e di $2q^2$ compaiono tutti un numero pari di volte. Ciò è assurdo perchè nella scomposizione di $2q^2$ il fattore primo 2 deve necessariamente comparire un numero dispari di volte.

1.1 Esercizi

Esercizio 1.2. Dimostrare che

- 1. $\sqrt{5}$ è un numero irrazionale.
- 2. $\sqrt{10}$ è un numero irrazionale.
- 3. $\frac{1}{2} + \sqrt{2}$ è un numero irrazionale.

Esercizio 1.3. Dimostrare che se x è un numero irrazionale e $y \neq 0$ è un numero razionale allora il loro prodotto xy è irrazionale.

²Il teorma fondamentale dell'aritmetica afferma che ogni numero intero maggiore di uno si scrive in modo unico (a meno dell'ordine dei fattori) come prodotto di numeri primi.

Esercizio 1.4 (Vero o Falso?). Dire se le seguenti proposizioni sono vere o false motivando le risposte.

V F La somma di due numeri irrazionali è un numero irrazionale.

V F Il prodotto di due numeri irrazionali è un numero irrazionale.

$$\boxed{V \mid F} \sqrt{11} + \sqrt{2} = \sqrt{13}.$$

Esercizio 1.5. Dimostrare la seguente proprietà .

Se x e y sono due interi non negativi allora

$$\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$$

Esercizio 1.6. Dimostrare che in un triangolo equilatero lato e altezza sono incommensurabili.

Esercizio 1.7 (Vero o Falso?). Dire se le seguente proposizione è vera o falsa motivando la risposta.

V F Se il numero \sqrt{n} , $(n \in \mathbb{N})$ non è un quadrato perfetto allora \sqrt{n} è irrazionale.

Esercizio 1.8. Si considerino i numeri $x = 7 + \sqrt{2}$ e $y = 7 - \sqrt{2}$.

- 1. I numeri x e y sono irrazionali?. Spiegare.
- 2. Determinare i numeri x + y e xy.
- 3. Determinare i numeri x^2 e y^2 .

Esercizio 1.9. Dimostrare che $\sqrt{2} + \sqrt{3}$ è un numero irrazionale.

Esercizio 1.10 (Trasporto di un fattore fuori dal segno di radice.). Dimostrare che $\sqrt{12} = 2\sqrt{3}$.

Esercizio 1.11 (Trasporto di un fattore fuori dal segno di radice.). In ognuna delle seguenti espressioni portare fuori, se possibile, un fattore dal segno di radice

1.
$$\sqrt{\frac{2}{25}}$$

2.
$$\sqrt{\frac{12}{25}}$$

3.
$$\sqrt{27x^2}$$

4.
$$\sqrt{9x+9}$$

5.
$$\sqrt{x^2 + y^2}$$

$$6. \ \sqrt{\frac{1}{x} + x + 2}$$

7.
$$\sqrt{\frac{1}{x^2} + x^2 + 2}$$