Liceo Scientifico "L. Cremona" Test di Fisica. Termologia.										Classe: Docente: M. Saita		
Cognome:					Nome:				26 maggio 2012			
Es. 1	Es. 2	Es. 3	Es. 4	Es. 5	Es. 6	Es. 7	Es. 8	Es.	9	Es. 10	Totale	

Rispondere per iscritto ai sequenti quesiti sul foglio protocollo.¹

Esercizio 1. Un oggetto di piombo è riscaldato in un forno dalla temperatura di $20^{\circ}C$ alla temperatura di $140^{\circ}C$. Esprimere la variazione di temperatura in gradi kelvin.

Esercizio 2. Una piastra di ferro circolare ha diametro $d=10\,cm$ alla temperatura di $0^{o}C$. Qual è la superficie della piastra quando viene portata a una temperatura di $200^{o}C$? coefficiente di dilatazione lineare del ferro $=12, 1 \cdot 10^{-6} \, {}^{\circ}C^{-1}$.

Esercizio 3. Un corpo di massa m = 300 g cede 3000 J di calore e la sua temperatura diminuisce di $15^{o}C$. Qual è la capacità termica del corpo? Qual è il suo calore specifico?

Esercizio 4. Determinare la massa e la capacità termica di un oggetto di rame , sapendo che per far aumentare la sua temperatura di $8^{\circ}C$ è necessario somministrargli 500 J di calore. calore specifico rame = $390 J/(\text{kg} \cdot ^{\circ}\text{C})$.

Esercizio 5. Quante calorie occorre sottrarre da 200 g di acqua per raffreddarli da 80 oC a $45\,^oC$?

Esercizio 6. $330\,g$ di acqua a $35^{o}C$ sono versati in un recipiente di alluminio che ha temperatura iniziale di $10^{o}C$ e massa $860\,g$. Qual è la temperatura finale del sistema, supponendo che non venga scambiato calore con l'ambiente esterno?

calore specifico alluminio= 880 $J/(kg \cdot {}^{\circ}C)$ calore specifico acqua= 4186 $J/(kg \cdot {}^{\circ}C)$

Esercizio 7. Due cubi dello stesso materiale hanno lato rispettivamente $l \in 3l$.

- 1. Indicato con V il volume del cubo di lato l e con V' il volume di quello di lato 3l si determini il rapporto $\frac{V'}{V}$.
- 2. Detta C la capacità termica del cubo di lato l e C' la capacità termica di quello di lato 3l, si determini la relazione esistente tra C e C'.

Esercizio 8. Una lastra quadrata di rame ha lato 1 m. Se il coefficiente di dilatazione lineare del rame è λ , quanto vale il coefficiente di dilatazione superficiale? Spiegare.

Esercizio 9. Enunciare le leggi di Gay-Lussac.

Esercizio 10. Motivare la scelta della scala termometrica in gradi Kelvin (temperatura assoluta).

¹File tex: test05_termologia_2g_2012.tex

Soluzioni

Esercizio 1 120 K

Esercizio 2 2. $78,9 \text{ cm}^2$.

Esercizio 3 $C = 200 \,\text{J/K}; c = 667 \,\text{J/(Kg} \cdot \text{K)}.$

Esercizio 4 $m=160\,\mathrm{g},\,C=62,5\,\mathrm{J/K}.$

Esercizio 5 7000 cal.

Esercizio 6 $26 \,{}^{o}C$.